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Abstract

In this work, we investigated the effects of slip boundary condition and Hall currents
on peristaltic motion of a non-Newtonian fluid which is obeying Bingham-Papanastasiou
model, with heat transfer taking into account the thermal radiation and heat generation,
through an asymmetric channel. This phenomena is modeled mathematically by a system of
governing equations which are continuity, momentum and heat equations. These equations
are solved analytically under low Reynolds number condition and long wavelength approx-
imation. The stream function and temperature distribution are obtained as functions of
physical parameters of the problem. The effects of the parameters on these solutions are
discussed numerically and illustrated graphically through a set of figures. It is found that
the physical parameters played important roles to control the velocity and temperature
distribution.

Keywords: Slip boundary condition; Hall currents; Peristaltic transport; Bingham-Papanastasiou
fluid model; Thermal radiation; Heat generation.

1 Introduction

The word peristalsis stems from the Greek word peristalikos. Peristalsis is defined as a wave of
relaxation contraction (expansion) imparted by the walls of a flexible conduit, there by pump-
ing the enclosed material, it is a nature’s way of moving the content within hollow muscular
structures by successive contraction of their muscular fibers [11, 12, 18, 19]. Peristalsis is now
well-known to the physiologists to be one of the major mechanisms for fluid transport in many bi-
ological systems, it results physiologically from neuron muscular properties of the tubular smooth
muscles [9, 23].

The peristaltic transport may be involved in many biological organs, e.g., swelling food
through the esophagus, movement of chime in the gastrointestinal tract, urine transport from
the kidney to the bladder through the ureter, transport of spermatozoa in the ducts efferent of
male reproduction tract and in the cervical canal of the female, movement of ova in the fallopian
tub, vasomotion of small blood vessels such as venules and capillaries as well as blood flow in
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arteries, and in many other glandular ducts [9, 10, 18, 19, 23]. There are also many industrial
applications of the peristaltic transport like, blood pumps in heart lung machine, transport of
corrosive fluid, where the contact of the fluid with the machinery parts is prohibited [19].

Although the majority of fluids in the biosphere present Newtonian behavior, non-Newtonian
behavior is observed in most industrial synthetic and non-synthetic fluids and in biological flu-
ids, such as human blood and saliva. To quote a few examples, crude oil and drilling muds from
the oil industry, paints, cosmetics, glues, soaps, detergents and many food products. Among
them, an important class of non-Newtonian materials presents a yield stress limit which must
be exceeded before significant deformation can occur the so-called Viscoplastic materials. In
order to model the stress-strain relation in these fluids, some fitting have been proposed such as
the linear Bingham equation and the non-linear Herschel-Bulkley and Casson models [22, 24, 17].

On the other hand Viscoplastic fluids are characterized by the absence of deformations when
the applied load is below a fixed threshold. Bingham fluids area special class of Viscoplatic
fluids named so after Bingham [5], who described several types of paint using this definition.
Viscoplastic fluids constitute a very important class of non-Newtonian fluids. The modelling of
Bingham materials is of crucial importance in industrial applications, since a large variety of
materials (e.g. foams, pastes, slurries, oils, ceramics, etc.) exhibit the fundamental character
of viscoplasticity, that is the capability off lowing only if the stress is above some critical value
[13, 25, 6].

However, the Bingham model is not amenable to numerical analysis because in some complex
applications, parts of material flow while the rest behaves as a solid. This causes difficulties in
tracking the shape and the location of the yield surfaces and applying two different constitutive
equations across them. In addition, at vanishing shear rates, the apparent viscosity in Bingham
model becomes infinite, which leads to a discontinuity and numerical difficulties. To overcome
these issues, Papanastasiou proposed a modified Bingham model to approximate the rheological
behavior of Bingham type materials [26, 20, 2].

We are aware that the no-slip condition in fluid mechanics means that the fluid velocity
matches the velocity of the solid boundary. Nearly 200 years ago Navier proposed in his original
paper on linearly viscous fluids a general boundary condition that permits the possibility of slip
at a solid boundary. This boundary condition assumes that the tangential velocity of the fluid
relative to the solid at a point on its surface is proportional to the tangential stress acting at that
point. The constant of proportionality between these two quantities may be termed a coefficient
of sliding friction (the slip parameter), which is assumed to depend on the nature of the fluid
and the solid surface [14]. Some experimental and theoretical studies stated that slip condition
could not be ruled out as an important element to understanding of certain characteristic flow [1].

The fluid flows in the presence of magnetic field has promising applications in engineering,
chemistry, physics, the polymer industry and metallurgy. Some examples include controlling the
rate of cooling, blood plasma, drying, evaporation at the surface of a water body, geothermal
reservoirs, thermal insulation, enhanced oil recovery, cooling of nuclear reactors, bleeding reduc-
tion during surgeries, hyperthermia etc. Also under the influence of powerful applied magnetic
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fields the Hall effects in peristalsis cannot be ignored. In such case the applied magnetic field is
powerful or collision frequency is small [16].

There are several studies deal with peristaltic transport with different fluids under the effect
of different types of the external forces, as mentioned in [8] and see also, [3, 4, 7, 15]. To the
best of our knowledge, no investigation has been made yet to investigate the effect of slip on
peristaltic transport for Bingham-Papanastasiou fluid in the presence of Hall current and heat
transfer.

In this article the basic equations of motion of the non-Newtonian Bingham-Papanastasiou
fluid as well as energy equation are written in section 2. In section 3 the constitutive equations of
that fluid are explained. The formulation of the problem investigated mathematically in section
4. In section 5 the stream, velocity and temperature distribution functions; which are calculated
analytically and with the help of Mathematica program; are written. Results and discussion is
explained in section 6, the conclusion in section 7 and in section 8 the caption of figures are
listed. Then the figures which explained the effect of different parameters of the problem on the
the heat and velocity are listed, this paper ended with the appendix and list of references.

2 Basic equations

The basic equations which describe the motion of non-Newtonian fluid with heat transfer can be
written as

Continuity equation
∇ · V = 0, (1)

Momentum equation

ρ
d V

dt
= −∇P +∇ · S + J ∧B (2)

Energy equation

ρcp
d T

dt
= k1∇2T + S · ∇V −∇ · q

r
+Q(T − T0), (3)

where

J = σ

[
(V ∧B)− 1

e ne
(J ∧B)

]
,

V is fluid velocity vector, ρ is the density of the fluid, P is the pressure, S is the extra-stress
tensor (Sij), J is the current density vector including the Hall effect, σ is the electric conductivity,
e is the electric charge, ne is the number density of electrons, B = (0, 0, B0) is the uniform
magnetic field with magnetic flux density, T is temperature, k1 is the thermal conductivity, d

dt

denotes the material time derivative and ∇2 is the Laplacian operator, Q is heat generation, q
r

the radiation heat flux vector.
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3 The constitutive equations

The regularized constitutive equation proposed by Papanastasiou [21] is

S =

[
µ+

S0(1− exp(−mγ̇)
γ̇

]
γ̇, (4)

where µ is the plastic viscosity, S0 is the yield stress, m is a stress growth exponent and γ̇
denote the rate of strain tensor;

γ̇ = ∇V + (∇V )T (5)

( ∇V is the velocity-gradient tensor and (∇V )T is its transpose) and γ̇ is the magnitude of the
rate of strain tensor,

γ̇ = |γ̇| =
√

1

2
IIγ̇ =

√
1

2
γ̇ : γ̇ =

√
1

2

∑
i

∑
j

γ̇ij γ̇ji , (6)

where IIγ̇ is the second invariant of γ̇.

4 Mathematical formulation

Consider flow of fluid in two-dimensional asymmetric channel, X-axis is taken in motion direction
while Y -axis is perpendicular on it and (U, V ) are the velocity components in X and Y directions
respectively as shown in Fig.(1).

  Bingham - Papanastasiou  Fluid
 0

0.5 1.0 1.5 2.0

-1.0

-0.5

0.5

1.0

H1 = d1 + a1 CosB
2 Π

Λ

Hx - ctLF

H2 = -d2 - b1 CosB
2 Π

Λ

Hx - ctL + JF

Y

X

d1

d2

a1

b1

Fig. (1)

The channel asymmetry is produced by choosing the peristaltic wave train on the walls to
have different amplitudes and phase, consider the upper and lower channel walls are

Y = H1 = d1 + a1 cos

[
2π

λ
(X − c t)

]
(7)
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Y = H2 = − d2 − b1 cos

[
2π

λ
(X − c t) + ϑ

]
(8)

where a1 and b1 are the amplitudes of the waves, λ is the wave length, (d1 + d2) is the width of
the channel and ϑ is the phase difference that varies in the range 0 ≤ ϑ ≤ π. Further, a1, b1, d1,
d2 and ϑ satisfy the condition a21 + b21 + 2a1b1 cosϑ ≤ (d1 + d2)

2.

Introducing a wave frame (x, y) moving with the velocity c away from the laboratory frame
(X, Y ), by the transformations

x = X − ct, y = Y, u = U − c, v = V, p (x) = P (X, t), (9)

where u and v are the fluid velocity components and p is pressure in the wave frame of references.

The equations (1-3 ) will be on the form

∂u

∂x
+
∂v

∂y
= 0, (10)

u
∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂P

∂x
+
∂Sxx
∂x

+
∂Sxy
∂y

+
σB2

0

1 +H2 (Hv − (u+ c)), (11)

u
∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂P

∂y
+
∂Syx
∂x

+
∂Syy
∂y

− σB2
0

1 +H2 (v +H(u+ c)), (12)

ρcp

(
u
∂T

∂x
+ v

∂T

∂y

)
= k1

(
∂2T

∂x2
+
∂2T

∂y2

)
+ Sxx

∂u

∂x
+ Sxy

∂u

∂y
+ Syx

∂v

∂x
+ Syy

∂v

∂y
− ∂qr
∂y

+Q(T − T0),

(13)
where H = σB0

e ne
is the Hall parameter and the radiative heat flux in the X− direction is

considered as negligible compared to Y− direction.

Also, the constitutive equations become

Sxx = 2

(
µ+

S0

γ̇

(
1− e−mγ̇

)) ∂u

∂x
, (14)

Sxy = Syx =

(
µ+

S0

γ̇

(
1− e−mγ̇

))(
∂u

∂y
+
∂v

∂x

)
, (15)

Syy = 2

(
µ+

S0

γ̇

(
1− e−mγ̇

)) ∂v

∂y
, (16)

with

γ̇ =

[
2

(
∂u

∂x

)2

+

(
∂u

∂y
+
∂v

∂x

)2

+ 2

(
∂v

∂y

)2
] 1

2

, (17)
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and the wall equations will be

y = d1 + a1 cos
2π

λ
x (18)

y = − d2 − b1 cos

[
2π

λ
x+ ϑ

]
. (19)

Further, by using Rosseland approximation for radiation, the radiative heat flux qr is given by

qr = −4

3

σ0
k0

∂T 4

∂Y

where σ0 is Stefan-Boltzman and k0 is the Rosseland mean absorption coefficient.
Moreover, we suppose that the temperature difference with in the flow is such that T 4 may be
expanded in a Taylor series. Hence, expanding T 4 about T0 and ignoring higher order terms we
get:

T 4 ∼= 4 T 3
0 T − 3 T 4

0

i.e

qr = −16

3

σ0T
3
0

k0

∂T

∂Y
(20)

Now introducing the stream function ψ (u = ∂ψ
∂y

= ψy, v = −∂ψ
∂x

= −ψx) and the following
non-dimensional variables

x̄ =
x

λ
, ȳ =

y

d1
, δ =

d1
λ
, ū =

u

c
, v̄ =

v

δc
, t̄ =

c t

λ
, a =

a1
d1
,

b =
b1
d1
, d =

d2
d1
, h1 =

H1

d1
, h2 =

H2

d1
, ψ̄ =

ψ

c d1
, S̄ =

d

µc
S

¯̇γ =
d1 γ̇

c
, p̄ =

d21 p

µ λ c
, R =

ρc d1
µ

, K =
σB2

0d
2
1

µ
, Θ =

T − T0
Tw − T0

, (21)

after dropping bars and under the assumptions of long wave length (δ ≪ 1) and low Reynolds
number, the equation of continuity is simply verified.
Equations (11 - 13), using eq. (20), become

∂Sxy
∂y

− ∂p

∂x
−H2

(
∂ψ

∂y
+ 1

)
= 0 (22)

∂p

∂y
= 0, (23)(

1 +
4

3Rn

)
∂2Θ

∂y2
+ Pr G Θ+ Pr Ec Sxy

∂2ψ

∂y2
= 0, (24)

Also, equations (14 - 17) become
Sxx = 0 (25)
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Sxy =

[
1 +

Bn

|γ̇|
(
1− e−M |γ̇|)](∂2ψ

∂y2

)
, (26)

Syy = 0 (27)

|γ̇| = ∂2ψ

∂y2
. (28)

So we can write

Sxy =

[
1 +

Bn

ψyy

(
1− e−Mψyy

)]
ψyy (29)

and for small values of M we will get

Sxy = (1 +BnM)ψyy (30)

where H2 = K
1+H2 , Ec = µc2

k1∆T
= c2

cp∆T
is the Eckert number, Bn = d1

µc
S0 is Bingham num-

ber, M = c m
d1

is the dimensionless stress growth exponent, Pr = µCp

k1
is the Prantdel number,

Rn = k1k0
4σ0T 3

0
is the radiation parameter, G =

Qd21
µCp

is the generation parameter.

By eliminating the pressure between (22),(23) and then using (30) we have

(1 +BnM)ψyyyy −H2ψyy = 0 (31)

also, equation (24) will take the form(
1 +

4

3Rn

)
∂2Θ

∂y2
+ Pr G Θ+ Pr Ec(1 +BnM)(ψyy)

2 = 0 (32)

It is obvious that when Bn = 0 equations (31) and (32) will represent the equations of motion
and energy of ordinary Newtonian fluid.

Further more, after applying equation (21) on equations (18) and (19) the upper and lower
channel walls in dimensionless forms will be

y = h1 = 1 + a cos 2πx, (33)

y = h2 = −d− b (cos 2πx+ ϑ). (34)

Also, the non-dimensional appropriate boundary conditions will be

ψ =
q

2
, ψy + β ψyy = −1, Θ = 1, at y = h1, (35)

ψ = −q
2
, ψy − β ψyy = −1, Θ = 0, at y = h2, (36)

where q is the flux and β is the non-dimensional slip parameter.
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5 Solution of the problem

Through introducing the boundary conditions (35 -36) into (31, 32) the stream function will be

ψ = [l7 (h1 + h2 − 2y) + 2 (l8 sinhα (y − h1) + l9 coshα (y − h1) + h1 − 2y)

+2 (l10 sinhα (y − h2) + l11 coshα (y − h2)− h2)]l12

so the velocity in x-direction will be

u = [−2l7 + 2 (l8α coshα (y − h1) + l9α sinhα (y − h1)− 2)

+2 (l10α coshα (y − h2) + l11α sinhα (y − h2))]l12

and the temperature distribution equation will be

Θ = l14(α
4K2Ecl

2
11

(
3Rn

(
4α2 −GPr (coshα (−h1 − h2 + 2y)− 1)

)
+ 16α2

)
)+A1 sinh(ζy)+A2 cosh(ζy)

Where α, ζ, l1 − l14, A1 andA2 are given in the Appendix.

6 Results and discussion

In order to have an estimate of the quantitative effects of the various parameters involved in the
results of the present analysis we used the softwares MATHEMATICA program. The numerical
evaluations of the analytical results are obtained for the velocity u and temperature Θ.

Figures (2-10) illustrated the effect of some parameters of the problem on the temperature Θ.
In Fig.(2), we observed that Θ increases with Bingham number Bn. Fig.(3) showed the effect
of Eckert number Ec, we noticed that Θ increases with Ec. Fig.(4) illustrated the effect of heat
generation parameter G, it is obvious that Θ increases with G.

From Fig.(5) we deduced that Θ increases with increasing of Hall parameter H. In Fig.(6) it
is obvious that Θ increases with increasing of the growth parameter M , while Θ decreases with
increasing of the phase angle ϑ as shown in Fig.(7) (at ϑ = 0 refers to the case of symmetric
channel).

Also Figs.(8) and (9) explained that Θ increases with Prantdel number Pr and radiation param-
eter Rn. It is clear that Θ decreases with increasing of the slip parameter β as shown in Fig.(10).

Figures (11-15) illustrated the effect of some parameters of the problem on the velocity u.
We observed that u increases with Bn, H, M and ϑ as obtained from Figs.(11-14), while u de-
creases with the slip parameter β as illustrated in Fig.(15).
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7 Conclusion

The problem of two dimensional peristaltic flow of a non-Newtonian Bingham-Papanastasiou fluid
with heat transfer, through asymmetric channel, under the influence of slip boundary condition
and Hall currents is formed. The equations governing this motion have been solved analytically
under the conditions of low Reynolds number and long wave length approximation, subjected to
a set of appropriate boundary conditions. The expressions of velocity and temperature distri-
bution have been evaluated for different parameters and have been shown graphically through a
set of figures, we have concluded that:

1- the temperature distribution and velocity increase with increasing of Hall parameter H.
2- the temperature distribution and velocity decrease with increasing of the slip parameter β.

8 Caption of figures

Fig.(1) The geometry of the problem.

Fig.(2) The temperature distribution Θ is plotted against y for different values of Bingham num-
ber Bn when a = 0.5, b = 0.3, d = 0.5, x = 1, ϑ = π, q = 0.5, K = 1.2, β = 0.5, H = 0.1,
M = 10, Ec = 0.1, Pr = 0.5, Rn = 3, G = 1 .

Fig.(3) The temperature distribution Θ is plotted against y for different values of Eckert number
Ec when a = 0.5, b = 0.3, d = 0.5, x = 1, ϑ = π, q = 0.5, K = 1.2, β = 0.5, H = 0.1, M = 10,
Bn = 1, Pr = 0.5, Rn = 3, Ec = 0.1 .

Fig.(4) The temperature distribution Θ is plotted against y for different values of heat generation
parameter G when a = 0.5, b = 0.3, d = 0.5, x = 1, ϑ = π, q = 0.5, K = 1.2, β = 0.5, H = 0.1,
M = 10, Bn = 1, Pr = 0.5, Rn = 3, G = 1 .

Fig.(5) The temperature distribution Θ is plotted against y for different values of Hall parameter
H when a = 0.5, b = 0.3, d = 0.5, x = 1, ϑ = π, q = 0.5, K = 15, β = 0.5, Ec = 0.5, M = 10,
Bn = 1, Pr = 0.5, Rn = 3, G = 1 .

Fig.(6) The temperature distribution Θ is plotted against y for different values of the growth
parameter M when a = 0.5, b = 0.3, d = 0.5, x = 1, ϑ = π, q = 0.5, K = 1.2, β = 0.5, Ec = 0.5,
H = 0.1, Bn = 1, Pr = 0.5, Rn = 3, G = 1 .

Fig.(7) The temperature distribution Θ is plotted against y for different values of the phase angle
ϑ when a = 0.5, b = 0.3, d = 0.5, x = 1, q = 0.5, K = 1.2, β = 0.5, Ec = 0.1, M = 10, H = 0.1,
Bn = 1, Pr = 3, Rn = 5, G = 0.3 .

Fig.(8) The temperature distribution Θ is plotted against y for different values of the Prantdel
number Pr when a = 0.5, b = 0.3, d = 0.5, x = 1, q = 0.5, ϑ = π, K = 1.2, β = 0.5, Ec = 0.1,
M = 10, H = 0.1, Bn = 1, Rn = 3, G = 0.3 .
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Fig.(9) The temperature distribution Θ is plotted against y for different values of the radiation
parameter Rn when a = 0.5, b = 0.3, d = 0.5, x = 1, q = 0.5, ϑ = π, K = 1.2, β = 0.5, Ec = 0.1,
M = 10, H = 0.1, Bn = 1, Pr = 3, G = 0.3 .

Fig.(10) The temperature distribution Θ is plotted against y for different values of the slip pa-
rameter β when a = 0.5, b = 0.3, d = 0.5, x = 1, q = 0.5, K = 1.2, Rn = 3, Ec = 0.1, M = 10,
H = 0.1, Bn = 1, ϑ = π, Pr = 0.5, G = 1 .

Fig.(11) The velocity u is plotted against y for different values of the Bingham number Bn when
a = 0.5, b = 0.3, d = 0.5, x = 1, q = 0.5, ϑ = π, β = 0.2, K = 1.2, M = 100, H = 1 .

Fig.(12) The velocity u is plotted against y for different values of the Hall parameter H when
a = 0.5, b = 0.3, d = 0.5, x = 1, q = 0.5, ϑ = π, β = 0.5, K = 1.2, M = 100, Bn = 1 .

Fig.(13) The velocity u is plotted against y for different values of the growth parameter M when
a = 0.5, b = 0.3, d = 0.5, x = 1, q = 0.5, ϑ = π

2
, β = 0.5, K = 10, H = 1, Bn = 2 .

Fig.(14) The velocity u is plotted against y for different values of the phase angle ϑ when a = 0.5,
b = 0.3, d = 0.5, x = 1, q = 0.5, M = 10, β = 0.2, K = 1.2, H = 1, Bn = 5 .

Fig.(15) The velocity u is plotted against y for different values of the slip parameter β when
a = 0.5, b = 0.3, d = 0.5, x = 1, q = 0.5, M = 10, ϑ = π

2
, K = 1.2, H = 1, Bn = 5 .
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The Appendix

α = H√
(1+BnM)

, ζ =
√

3GRnPr

−3Rn−4 , l1 = α
2 (h1 − h2) , l2 = 2α

(
(h1 − h2)

(
α2β2 + 1

)
− 2β

)
,

l3 = 4
(
α2β (h1 − h2)− 1

)
, l4 = l2 sinh 2l1 + l3 cosh 2l1 + 4, l5 = −α

(
qα2β2 + 2β + q

)
, l6 = −2

(
qα2β + 1

)
,

l7 = l5 sinh 2l1 + l6 cosh 2l1, l8 = −αβ(h1 + h2 + q), l9 = (h1 + h2 + q), l10 = αβ(h1 − h2 + q),

l11 = (h1 − h2 + q), l12 = 1
l4
, l14 = 1

l13
, l13 = 8G ((αβl1 − 1) sinh l1 + l1 cosh l1))

2 (
3Rn(GPr + 4α2) + 16α2

)
,

A1 = l14[cosech(ζ(h1−h2))(α
4K2Acl

2
11(cosh(h1ζ)−cosh(h2ζ))(3Rn(4α

2−GPr(cosh(2l1)−1))+16α2) +l13 cosh(h2ζ)],

A2 = −l14[cosech(ζ(h1 − h2))(α
4K2Acl

2
11(sinh(h1ζ) + sinh(h2ζ))(3Rn(4α

2 − GPr(cosh(−2l1) − 1)) + 16α2))

+l13 sinh(h2ζ)],
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